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ABSTRACT

- This report deals with the calculation of unsteady lami-
nar boundary layers over arbitrary cylinders in an incompres-
sible flow. The calculation procedure is based on an improved
integral solution to the governing unsteady boundary-layer
equations. The essential feature of this improved solution
tion, which is then used to linearize the governing equation
in suech a way that improved unsteady veloclty profiles in the
boundary layer are readily obtained. The integral solution
is first described in detail, based on two assumed types of
profiles, one being the well=known Pohlhausen's fourth-degree
polynomial, and the other, an exponential function containing
one arbitrary parameter., The basis of the improvement tech-
nique is then presented. Also introduced is a simple and
convenient error criterion which is capable of indicating,
without the knowledge of an exact solution, whether the
improved solution is actually more accurate than the basic
integral solutlon. Six numerical examples are then described

to demonstrate the application of the improved integral solu

tion and also to illustrate the use of the error criterion.

]

Finally, 1t 1s concluded on the basis of the numerical re
sults that in a general unsteady problem accurate results can
velocity polynomials within 1ts whole range of valldity, and
that, outside of this range, the integral solution, based on
exponential function, should be used with or without the im-
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provement, depending on the relative magnitudes of the res=

pective error quantities.



NOMENCLATURE
(/6" ) (3, /™)
(1/6"%) (26" /oe*)
(To/8"2) (36" /02*)
local skin-friction coefficient, Tw/(l/épuoé)
arbitrary function introduced in Equation (21)
universal functions defined in Equations (8)
dimensionless stream function in Equation (39)
form parameter in the exponential profile
function of t*
ratio of displacement to momentum thicknesses
error criterion
universal function defined in Equations (8)
characteristic length of cylinder
/(T ")
function defined in Equation (30)
Reynolds number, uyL/v

time variable



uioj‘c/L

velocity components in the x=- and ¥- directions,
respectively

u/u,

reference velocity

Ue/Ug

distance coordinate along cylinder surface measured
from forward stagnation point or from leading edge

x/L

distance coordinate normal to cylinder surface

measured from surface

unsteadiness parameter

1/2

((en/e ) 2(52/0)) 1o

a boundary~-layer thickness

momentum thickness

error quantity defined in Equation (35)
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n y/6
il Y‘(uﬁ/vx)l‘/2
Mo y/VE

A form parameter in the polynomial profile

m dynamic viscosity

v kinematic viscosity

g function defined in Equations (7)
gi §L/ Ug

P density

Tw wall shear stress

¢ function of x*

Subscripts:
1,7 grid points in Fig. 1

° initial condition

o] basic integral solution
w surface condition

L free-stream condition

I region 0¢M<1

-
-

region 1<¢M¢w



Superseript :
' Derivatives with respect to the independent

variable

INTRODUCTION

The two dimensional incompressible laminar boundary=
layer theory for steady flows around cylinders is now well
established in the literature. It is unfortunate, however,
that the corresponding theory for unsteady flows is much
less advanced, even though it 18 generally known that un=
steady flow 18 physically more hatural than flow under
steady conditions, and that considerable physical insight
to steady-=flow behavior may be gained by studying unsteady
boundary layers concerning coupled effects of vorticity
diffusion away from the c¢ylinder and fluild convection along
the cylinder surface. The main difficulty is evidently the
inclusion of the time variable in the governing laminar
boundary-layer equations. Nevertheless, many significant
investigations on unsteady laminar boundary layers have
appeared in the literature, especially in recent years. A
concise survey on this subject has recently been given by
Stewartson [17,1 Briefly, most published studies on unsteady
laminar boundary layers may be grouped into six major areas.
The well;known classical Rayleigh problem has now been ex-
tended to other infinite plate problems with more general

boundary conditions [2~5].g Another area of study centers

Numbers in brackets refer to References at the end of this
,report, ‘ :
®No attempt is here made to quote all References,



on the prediction of the instant of onset of laminar separa-
tion for unsteady flow starting from rest, as undertaken by
early workers in this field [6]. A third area of investiga-
tion concerns with exact solutions and possible exact solu=
tions to the governing differential equations for a number
of specific unsteady cases [7-11]. Furthermore, the leading-
edge problem of unsteady flow over a semi=-infinite plate has
received much attention Eiéalh]. Also, very recently the
effect of free-stream oscillation on laminar boundary-layer
behavior has been studied in great detail by many investi-
gators {}5522]5 The last area of investigation deals with
general unsteady laminar boundary layers over arbitrary
cylinders [236257.

In a recent study of hydrodynamic stability of unsteady
laminar boundary layers over arbitrary cylinders, it has
become apparent that, similar to the corresponding steady-
flow problem, the stability characteristic would depend
strongly on the second profile derivatives of the unsteady
velocity profiles in the boundary layers, and consequently,
accurate determination of these profile derivatives becomes
necessary. For arbitrary cylinders and arbitrary free-
stream unsteadiness, only approximate solutions are avail-
able in the literature. Both Schuh [24] and Yang EES] have
developed one-parameter integral solutions to this general
problem with the essential difference in the chosen profiles,

with Schuh [24] utilizing a combination of Hartree's profiles

for steady wedge flows and Pohlhausen's fourth-degree poly-



= 10 =

nomials, and Yang [25], profiles derived from exact simi-
larity solutions for unsteady stagnation flows [9]. Even
though these integral solutions do yield satisfactory overs
all unsteady laminar boundary-layer behaviors, there is
considerable doubt that these approximate solutions would
generally give second profile derivatives accurate enough
for stability calculations, as this is a well known fact

in the steady-flow theory.

This weakness of the integral solution, at least for
steady compressible or incompressible flows; can be corrected
to a very significant extent by an improvement teéchnique
developed recently [26,27]. Since the underlying idea of
this technique applies equally well to the general unsteady
laminar boundary-layer problem, there is good indication
that it may be directly extended to the present problem to
obtain improved unsteady velocity profiles. However, in
view of the complexity introduced by the added time variable,
such expectation can only be ascertained by detailed analysis
of the unsteady problem and comparison of calculated results
with known accurate solutions in the literature. The primary

purpose of this report is to present such an analysis and the
corresponding results, and in addition, it will also be shown
that the general validity of this improved integral solution

may be readily determined by an error criterion [27] .
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FORMULATION AND INTEGRAL SOLUTION

When an arbitrary two-dimensional cylinder moves unsteadi-
ly in an incompressible stagnant fluid, unsteady laminar boundary

layer develops on the cylinder surface. In the incompressible-

gsame fluid flowing over the stationary cylinder with the same
unsteady velocity. Thus, with the coordinate system fixed on
the cylinder, the well=known laminar boundary=layer equations
may be written as follows:

ot ox dy ot u“ax dy? (1)

—*—-=O (2)

where x 18 the coordinate along the cylinder surface measured
from the forward stagnation point or the leading edge, ¥y

the coordinate normal to the cylinder measured from the sur-

face; u and v, velocity components in the x- and Y-
directions, respectively, t the time variable, v the kinematic
viscosity, and the subscript e indicates conditions in the

free stream. The initlal conditlon generally depends on the

specific problem, while the boundary conditions may be written

as

(3)

y—>o uﬁug(x,'c)



= 12 =

For arbitrary, but prescribed variations of u,(x,t), integral
solutions based on somewhat different assumed velocity pro-
files have been presented by Schuh L24] and Yang [25] . The
present analysis follows essentially the latter; except for
some details, as will be shown later in the report. When the
momentum equation (1), after eliminating v according to (2);
is integrated across the boundary layer, the following well-

known integral equation results:

+ (2 + H) igs Do w2 (4)

where &, is the usual momentum thickness, H the ratio of

displacement to momentum thicknesses, T, the wall shear

stress, and K the viscosity. Now if we assume that the un-
steady velocity can be represented by a one=parameter family

of curves, i.e.

*

u

Ugy

layer thickness, Equation (4) becomes a first-order partial
).

differential equation for the unknown 6&(x,t In order

to facilitate the solution to this equation, it may be con-

veniently cast in a simpler dimensionless form as follows [?g]:
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F3 + K(C = A + ma)] (6)
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x o L 1 §
X === T w e § m—= Yy a==— (7)
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and u, 18 a reference velocity, and L; a characteristic

length of the cylinder. Furthermore, universal functions
K, F1, F and F3 are pure functions of the form parameter

A; which may be written as
2

ke (0 P, = H + 2= —
~ *' 8)
7 Ty 6(62) (
‘F‘. W e
and in addition, H and (ég/é) are also universal functions
of the same parameter A, provided that )\ is specifically
defined as

vy
which obviously reduces to the Pohlhausen's form parameter
for steady flows. It now becomes clear that even though K

is explicitly written as the unimown in Equation (6), the

-
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view of the unique relation (8) between K and X, once the
velocity profile (5) is assumed.

Before solutions to Equation (6) can be attempted, it is
necessary first to introduce specific profiles in the form
of Equation (5) and to determine the corresponding universal
functions. As already pointed out previously, Schuh's
analysis (24) utilizes both the Pohlhausen's fourth-degree
velocity polynomial (for K<O) and Hartree's profiles for
steady wedge flows (for K>0), and Yang [25] has based his
cholce on the exact profiles for unsteady stagnation "hyper-
bolic time-variation" flows [9]. The obvious weakness in
Schuh's cholce 1s that the resulting universal functions are
discontinuous at K = 0, and this point of discontinuity is
expected to occur quite frequently in any general unsteady-
flow problem. In addition, the Hartree's wedge=flow profiles,
as well as the corresponding universal functions, are only
known in tabulated forms, and henceé cannot be manipulated
readily. Yang's profiles, though continuous throughout the
entire region of K, evidently suffer the same difficulty.
However, since the present improved integral solutlon, as
will be described in the next section, utilizes the integral
solution as a first approximation, the velocity profiles and
the assoclated universal functions from the integral solution

ilable un-

must be manipulated. Consequently, all these ava
steady profiles are not sultable for the present use. In
the present study, two distinctly different profiles have

been considered. One is still the Pohlhausen's fourth-degree
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polynomial, which; however, 1s allowed to be valid in the
range =12¢)x¢+ 12, with the lower limit corresponding to
laminar separation. For M>12, the velocity polynomial be-
comes non-sensible, and hence is to be replaced by an ex-
ponential profile. This discontinuity is not expected to be
too serious in actual applications, since it only occurs in
a region of large values of £, corresponding to very large
acceleration in the free stream. Now the details of these
two assumed profiles are separately described.

The Pohlhausen's fourth degree polynomial for the velocity

profile is well known, and may be written as

u* = n(2 = 2n2 4 M3) + i 1 = m3 onet
° (10)
u* =1 nz 1
from which universal functions in (8) can be readily deter-

mined, resulting in
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Outside the region of validity of the above polynomial,

which has been utilized in both steady- and unsteady=flow
cases E28,2953} with high degree of success especilally in

the unsteady-flow problems. It is in the following form:
W =1- el - an)  0¢TKe (12)

y/6 and the form parameter G plays the same

where T
role as )\ 1in the Pohlhausen's polynomial. It should be
emphasized here that the boundary-layer thickness & in
Equation (12) has no relation whatever to that in Equation
(10). 1In addition, physically sensible profiles are only

=1 for laminar

ik

obtainable for negative G values, with G
separation. It 1s also seen that boundary conditions at in-
finity are automatically satisfied, and the relationship be=
tween G and & can be easily obtained from evaluating the
momentum equation (1) at the wall, 1.e.

52

1420 ==t (13)

v .
Now once the profile is known, the corresponding universal
functions may again be determined explicitly. They are shown

|

as follows:
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Now solution to the unsteady integral equation is con-
sidered. Equation (6) is a linear first-order partial dif-
ferential equation, the most general solution of which is by
the méthod of characteristics. However; this method ylelds
exact solutions to Equation (6) only in those cases where
two integrable equations can be obtained from the correspond-
ing characteristic equations. For general unsteady free=
stream velocity distribution, othér means of solution must
be used instead. In view of the above; problems of special

to different geometry and methods of solution:
1. Stagnation Flow with Free-Stream Velocity Varying

distribution may be written as
— ) * ]
T = [e(tM)] ,
X J b0
where g 1s an arbitrary, but continuously differentiable
function of time. With £*, A and B given by pure functions

of t* anda ¢ =o, Equation (6) reduces to

et ¢ '

w—— g — [F3 + K(HB-A)] (15)
, M J

1
which may be conveniently solved numerically for the unknown
A or @G, depending on the profiles chosen, in terms of cer-
tain initial condition. For instance, if g(0) = 1, corres-
ponding to initlally steady motion, then A(0) and G(0) can
be determined from steady-flow theory.




2. Flow over an Infinite Plate with Free-Stream Velocity

Varying Arbitrarily with Time
With U, = g(t®) and all derivatives with respect to
x* neglected, it may be readily shown that Equation (6)

now assumes the following form:
(16)

where both &¥ and B are now pure functions of t*. The
above equation may again be numerically integrated in terms
of any specific initial condition depending on the physical
problem under consideration,; resulting in either x(t*) or
6(t®). It may be pertinent to mention here that the corres-
ponding problem of unsteady flow over a semi-infinite plate
presents some difficulty regarding its solution. It must be
solved in the same manner as a general problem of an arbiltrary
cylinder in an arbitrarily unsteady flow, as will be described
later. One exception is the case of a semi-infinite plate
moving from rest with a constant acceleration. The corres-
ponding integral equation (6) has a similarity solution
satisfying the following ordinary equation (24,25]

Rt Tl (17)

ar 1l - Z?Fl

where P = x*/(ﬁ;t*), which is subjected to the boundary con=-
ditions K(0) = 0 and K(w) = K,, where the constant K,

is determined from

3K H(Ky) = 2Fp(K,) (18)
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Since only one boundary céondition is necessary, solution to
Equation (17) is obtained by matching the two solutions sat=
1sfying the two boundary conditions at a proper value of P,
Other details of this problem will be shown in a later sec-
tion. Another exception is for flow over a semi-infinite
plate with step-change in free-stream velocity. Since for
this problem K 1is identically zero, all universal functions
become constants, and Equation (6) in this limit reduces to

Te = + He—s % oW, (19)

where 2* = Zuy/L. This equation may be conveniently solved
by the method of characteristics. The corresponding char-

acteristic equations are then given by
dx* dﬁ* dz*
__ S em— e (2‘0)

After eliminating the two arbitrary constants of 1ntegration,
we obtain the general solution

‘% °F - U
z - —2t* = B(x" -—t%) (21)
H

where the arbitrary function F 1s determined from the ini-

tial and boundary conditions. For a flow starting from rest,

the conditions (x ,0) =0 and 2z*(0,t" ) = 0 must all be

satisfied. Hence Equation (21) becomes



2* = ==%x" t*3 =x (22v)

whére Equation (22a) indicates the transient behavior, while
Equation (22b), the steady-state solution. When the flow
changes from an originally steady-state condition, we have
accordingly z*(x*,0) = 2,%(x*) and 2Z*(0,t*) = 0. A sim-
lar analysis vields

(23)

where Upy 4s the initial stéady free-stream velocity, which
may bé taken as unity without loss of generality.
3. Arbitrarily Unsteady Flow over Arbitrary Cylinders

The validity of the method of characteristics as applied
to this general problem has been implicitly assumed by Schuh

general unsteady problem given. Yang [25] later has proposed
a step-by=step calculation procedure, also based on the method
of characteristics, to this general problem. Unfortunately,

a close examination of this procedure reveals that it yields
accurate results only in cases where the quantity _BK/éx*

1s a weak function of t”. In the present study, a new cal-
culation procedure is introduced, which has the capability of
obtaining numerical solution to Equation (6) as accurately

as desired., This procedure is based on a lumped approximation

of the variation of K with respect to ;*. If we now con-



sider the grid system in the x* - t* plane as shown in Fig.
1, 1t is seen that the derivative OK/dx* at any point may

be conveniently approximated by

ax*’ 5 26x*
t* = jat*

(24)

~~
|
|
|‘ :
b
3
i

which involves an error of the order of (Ax*)2., The integral
equation (6) may now be written as
S T 4 e XK e
3* F, [FB + K(C - A+ HB)] AAfl(ax* (25)
For a given problem, some initial condition K(x*,0) must
be known. For a flow starting from rest, K(x*,0) = Ky»
which mst Be determined from a limiting process similar to
that of obtaining Equation (18) [?5]@ When the flow is ini-
tially steady, K(x*,0) may then be evaluated from the steady-
flow theory. Before solution to Equation (25) is considered,
it 18 first necessary to obtain K(0,t*). For a blunt-nosed
cylinder, K(0,t*) 1s obtained by directly integrating Equa-
tion (25) with Us = O, which is evidently identical to Equa-
tion (15). When the cylinder has a sharp leading edge,
K(0,t*) becomes identically zero. Once K(x*,0) and
K(0,t¥) are known, solution to Equation (25) may then pro=-
ceed as follows3: Since at t* = 0 the derivative OK/3x"
is known exactly, there is no need to evaluate this quantity

from Equation (24). From the given unsteady free-stream

31n actual applications, 1t is desirable to treat either A
or G as the dependent variable, instead of K, in view of
the fact that all universal functions are explicit functions
of A or G.
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velocity distribution, quantities such as &', A, B, C and

U, may then be evaluated at this instant., Consequently,

now the right-hand side of Equation (25) can be determined
accordingly for all points along the x"=axis (Fig. 1).

Then one step of numerical integration with respect to c*

at each of these points immediately yields K(x*,at*). 1In
integration routine, which is accurate to the order of (at¥)%,
is very satisfactory. Together with the known value of
K(0,06*), derivatives (9k/9x*) at t* = at* may now be
evaluated for all points along the X -axis according to

(24). This process is then repeated for successive time in-
stants until a desired time elapse 18 covered. It is noted
that this step-by-step calculation procedure has one advantage
over that of pure finite-difference numerical approximations
in both x* and t*, and that is that here the question of
stability of the numerical solution never arises. Furthermore,

the present procedure can be conceivably improved in its

accuracy by using a higher-order differentiation formula than
that in Equation (24).

Once the parameter K becomes a known function of x*
and t*, the corresponding form parameter A or G can be
evaluated, ylelding & = 8(x",t*). Equation (10) or (12)

then immediately gives the unsteady velocity profiles. Thus,

the integral solution may now be consldered as complete.



- 23 =

AN IMPROVED INTEGRAL SOLUTION AND A RELATED ERROR CRITERION
As generally recognized in the application of Karman-
Pohlhausen's integral procedure, there are two essential
weaknesses which give rise to the inaccuracy of the approxis-
mate solution. One 1s that the governing partial differens
tial equation is only satisfied in the mean; and the other,
that the choice of assumed profiles is entirely arbitrary,
and the resulting accuracies of different types of profiles
could be different by significant amounts. In the laminar
boundary-layer theory, most earlier improvements for general
problems have beén based either on the choice of novel pro-
files or on the use of additional integral equations, or some=
times known as moment equations. Unfortunately, none of these
improvements has general validity to arbitrary problems. This
has led the present writer to develop an essentially different
problem [g;] In an attempt to correct significantly the
aforementioned weaknesses of the basi¢ integral solution.
This technique basically utilizes the integral solution as a
first approximation, which, when substituted into the govern-
ing differential equation, linearizes the equation, which may
then be readily solved for the improved profiles in closed
forms. In view of its apparent success, this technique has
since been extended to other physical problems [30,31].
Very recently, 1t has been further improved in a minor detail
in that now the boundary condition at infinity is exactly
satisfied, and in addition a simple error criterion is in-

troduced such that valldity of the improvement can be readily



determined without knowledge of the exact solution [27].

As mentioned previously, this improvement technique has only
80 far been developed for a parabolic=type of partial differ-
entlal equations in two indepéndent variables. Its extension
to equations with three independent variables railses some
uncertainties. The primary purpose of this section 1s to
present the detailed analysis of this extension to the general
unsteady boundary-layer problem in two-dimensional incompres=
sible flow. To simplify the presentation, the following will
be described only for the integral solution based on Pohl«
hausen's velocity polynomial. However, the formulation of
the improved procedure may be easily extended to cases where
exponential profiles (12) are used. In fact; it is only
necessary to replace the form parameter X\ by the quantity
(1 # 26) in view of Equation (13) and the usual definition
of . Neverthless, significant differences will be pointed
out, whenever desirable.

From the basic integral solution as deseribed previously,
both A and & become known functions of x' and t*, In
order to facilitate the linearization of the governing differ-
ential equations by introducing the integral solution, it is
now desirable to transform these equations from the (x,y,t)
coordinate system to the (A,M,t*) system. This transforma-

tion is governed by
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The continuity equation (2) is first considered. Solving for v

and transforming, we have

Equation (1) leads, after some manipulations, to
agu* au*

535 + El(k,ﬂ,t*)g% = Po(A,M,t%) (28)

where



{ & A .
BnMe") = o | € - o

}

v
*

It 18 noted that this transformation 1s exact; and the

original non-linearities are now included in P, and P,.

1
Consequeéntly, any solution that satisfies Equatioﬁ\(gs)

1s also a solution to the momentum equation (1). In the
présent improvement technique, Equation (28) is first
linearized by evaluating P, and P, on the basis of the
basic integral solution, and then integrated to give re-
fined profiles. The Justification comes from the fact that
P, and P, in Equations (29) and (30) only involve pro-
files and their integrals, and hence the basic integral
solution is expected to describe these functions rather
accurately. The inaccuracy of the integral solution in
predicting profile derivatives, especlally the second de-
rivatives, is now significantly reduced by satisfying the
governing differential equation (1) or (28) much more close-
ly. Therefore, Equation (28) may now be approximately

written as

(30)
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au*

where P,, and P, are Pl and P, evaluated from the

basic integral solution, respectively., The corresponding

boundary conditions are, for any A and t"

n=0 W =0 N @ =1 (32)

In general, solution to the linear equation (31) can be

expressed in closed form. However, in view of the composite

nature of the assumed profile (10) in the integral solution,
. 1t is necessary to integrate Equation (31) separately in
the two regions 0<M¢l and 1¢N<€=, resulting in

7
)7 P, d P/o d
u; = C/f f o 7" [ f°P'°I 7({5016 * 77]"’7 t C

0

) ~ ‘ Y, o7 7 0 d *
L(;I- _ C‘3 f’?e-j:P,Q_fh?d7 *f‘ f /o_zz /[[ fPJI 7 Jd7+c\
!

Fore
/

where the subscript I and II refer to the regions 0<M<€1

and 14Ms=, respectively, and C;, Cp, C3 and C; are
constants of integration, and generally functions of A and

ﬁ*, In order to eliminate these constants, two conditions

are required in addition to those in Equations (32), and

they are the matching conditions at N = 1, given by

* <
ar ol
e (34)

*
v = 1T an an

Since both P

10 and Py5 are continuous throughout the

region of M and Equations (34) insure the continuity of

(33)
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the profile and 1ts first derivative, it is seen that the
new profile (33) is at least continuous in its second de-
rivative in view of equation (31). It is pertinent here
to mention that, when the exponential profile (12) is
assumed in the basic¢ integral solution, the question of
this mateching in profiles does not arise; and it is only
necessary to extend the integrals in (33) to all values of
N and evaluate the two constants of integration according
to conditions in (32).

As mentioned previously, many improvements of the basic
integral procedure have appeared in the literature over the
years. Almost without exception; these improvements are
Justified by comparing results of both the improved solutions
and the basic integral solutions with known exact solutions
in certain specifilc cases. One major shortcoming of such
Justifications 1is that the accuracy of these improvements
is never too well ascertailned in cases for which no exact
solutions are avallable. At least for steady-flow theory,
this shortcoming has now been corrected by using a simple
error criterion, as shown very recently by the present writer
[27]@ Since there still exists some uncertainty as to whether
does improve the result based on the integral solution
alone for the general unsteady-flow problem, the use of such
an error criterion i1s indeed extremely desirable. It is

now to be shown that the development of such an error criterion

for the present problem presents no added complexity as



compared to that of the steady=flow theory.

Since the transformation from Equation (1) to Equation
(28) is exact, it is clear that the accuracies of the in-
tegral solution with and without the present improvement
depend largely on how closely Equation (28) is approximated
in each case. Consequently, we may define an error quantity
€ by

3By* du*

a0 3 “”-* 5 s & ] —viias w Do &

which is identically zero for an exact solution. For a given
assumed profile in the basic integral solution, deviations
from zero for € 1indicate levels of inaccuracy of the
approximate solution. In view of the fact that the error
quantity € defined in Equation (35) could have both positive
and negative values throughout the entire region of TN,

it 1s more convenient to consider a directly related error

quantity defined as follows:

0
where R 1is characteristic Reynolds number, uoL/v, It is

noted that this definition of J differs only slightly from
boundary=layer thickness 6, and represents an average error
of the profile detalls. To determine the relative degrees
of accuracy of the integral solutions with and without the
present improvement, it is then only necessary to determine

and compare respective J values at different combinations
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of X and £, Evidently, smaller values of J c¢orrespond
to the more accurate profiles. In the actual determination of
¢, Equation (35) may be used directly for the basic integral
solution. For the improvement, a further simplification is
possible. Since the improved profile satisfies Equation (31),
it may be readily shown that

5 ¥

€ = (Pl = PlO) ‘a‘—'ﬁ" + (Pag = Pg) (37)

Finally, it 1s particularly important to observe that compari-
sons can only be made of J values based on the same type of
assumed profiles used in the basic integral solution. Differ=
ent types of initially assumed profiles, such as polynomials
and exponential functions, inevitably lead to &'s which have
entirely different meanings. Since these 6 quantities are
directly involved in the transformation which eventually leads
to Equation (35), meaningful comparisons of the corresponding
J values evidently cannot be expected.

The improved integral solution presented in this section
specifically deals with the improvement of the local unsteady
velocity profiles. In particular, the boundary-layer thickness
function 6 remains the same as that given by the basic integral
solution. Obviously, this is done for the simple reason to
keep the calculatlons at a reasonable level. Nevertheless, it
is also concelvable that a similar formulation as that used in
the steady-flow theory [27] can be carried out to successively
approximate solution to Equation (28) with an iteration scheme

based on the integral solution as the zeroth-order approxima-



- 31 =

tion, with the view of possibly obtaining an exact solution.
However, in view of the greatly increased complexity of the
unsteady=flow problem, such an iteration solution does not
seem to be Justifiable,.
NUMERICAL EXAMPLES

For the purpose of demonstrating the application of the
improved integral solution, as well as illustrating the use of
the error criterion, several numerical examples have been cal-

culated in detail on an IBM 1620 digital computer. Whenever
possible, both assumed profiles, polynomial and expohential
function, are used in the basic integral solutions such that
range of validity of each of these profiles may be determined.
These examples and thelr results are now described individually.

Similarity solutions to the unsteady two-dimensional in-
compressible boundary-layer equations have been considered by

many investigators [7-111, However, only a few detailed exact

Vo = T (38)

where o 1s an unsteadiness parameter, positive for accelera-
tior and negative for deceleration. This is known as the
stagnation hyperbolic time=-variation flow for which a simi-
larity solution exists. The assoclated ordinary differential

equation assumes the following form:

-
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2
which is subjected to the boundary conditions
£(0) = £4(0) = 0 £i{ew) = 1

where f' is the velocity profile u* and prime denotes de-
rivatives with respect to the similarity variable T, defined
as y(ua/vx)l/za Numerical solutions to Equation (39) have
also been given by Yang [9] for a wide range of a from =3.0
to #1.6. The available exact velocity profiles, and in parti-
cular the profile derivatives provide us with an excellent
opportunity to assess the validity of the present improved in-
tegral solutions based on both types of assumed profiles.

For this problem; it may be readily shown that A = U4/(1l+a),
B=a/(l+a) and C = 0, Since K 1s now a constant, dependent
only on a, dK/dt* becomes identically zero. Hence Equation

(15) reduces to
(1 +a)fy + K(aH - 4) = 0 (40)

which immediately yields X(a) and G(a). When these are sub-
stituted in Equations (10) and (12), respectively, velocity

profiles uo* are obtained. This then completes the integral

solution. For the improvement solution, functions El and

P, in Equations (29) and (30) now become
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(41)

N erm—— e ©

e
L 1 +a 3

W

P

For the exponential funetion, it 1s only necessary to replace

A by (1 + 2G). These equations are not only used to evaluate
P;, and Pyy from the integral solution, but also to deter-
mine Pl and P2 from the improved profiles such that the
error quantity ¢, and eventually J may be calculated acéording
to Equations (37) and (36), respectively. Based on both fourth=
degree polynomial and the exponential function, the integral
solutions with and without the present improvement have been
obtained by detailed calculations for a values of 1.6, 1.0,

0, =1.0, -2,4 and =2.8. All corresponding J values have
also been evaluated, according to

£an J (polynomial)

(exponential)

Table 1 shows some results of these calculations in terms of

the surface derivatives of the velocity profiles f£"(0)

and the error quantities JA/1 - at®, Integral solutions based
on polynomials only exist up to an a-value of 0.2, while those
based on the exponential function does not seem to have an

upper limit. Lower limits for both assumed profiles obviously
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correspond to laminar separation. The results shown in
Table 1 are very instructive in several reéspeéects. Even
though the error quantities only indicate an average for the
entire profiles and yet f£"(0) values refer to only cne
specific value of M, there 1s still a good correlation be=
tween the two, namely, lower valués of the error quantity
do correspond to closer agreements with the exact solution.
Apparently, these surface profile derivatives are represen=
tative of other local profile values as far as accuracy is
concerned. For the case of assumed velocity polynomial,
it 1s seen that the present improvement reduces the error
in the basic integral solution considerably, indicating a
corresponding increase in accuracy of the result. This de-
finitely suggests the validity of the improved solution for
general use within the entire range of validity of the basic
integral solution based on Pohlhausen's velocity polynomials.
However, such a general conclusion cannot be made for the in=
tegral solution based on exponential profiles. For negative
values of a, the present solution indeed represents improve-
ment. However, when a becomes positive, J-values for the
present solution actually exceed that of the basic integral
solution, indicating that no improvements are realized in
these cases. Consequently, the present solution should not
be used. It is emphasized here again that J=values for the
two assumed profiles, which are seen to be different by some
orders of magnitude, bear no relation to one another, due to

entirely different meanings of 6&. Therefore, the relative

|
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merits of integral solutions, with and without the present
improvement, can only be determined by comparison with the
corresponding exact solutions. In this regard, it is clearly
seen from Table 1 that within the range of validity of the
integral solution based on polynomial profiles; the degrees
of accuracy of the improved solution based on polynomials far
exceed that based on exponential function. All these observa=
tions are further substantiated in Figs. 2-7, incl., which
are plots of f'"(T,) based on various solutions calculated
for different a-values. These comparisons of f£"(T;),

which are directly related to the second profile derivatives,
are much more critical than that of £"(0), sinece it is gen=
erally known that by far the major portien of inaccuracy in
the basic integral solution occurs in the second profile de=
rivatives and furthermore, these comparisons are made over
the complete range of T;. There is, however, also an indi-
cation that the accuracy of the improved solution decreased
as laminar separation is approached.

On the basis of the above comparisons in the present
problem, which does cover a wide range of free=stream unsteadi-
ness, it 1s perhaps reasonable to suggest that in a general
unsteady problem the improved integral solution based on
fourth-degree velocity polynomials is to be used within its
entire range of validity, i.e. 122x2>-12. Outside this region
for A>12, the results of this problem suggests the use of the
basic integral solution with the assumed exponential profile.

However, as one of the subsequent examples willl show, it is
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not always true that in thls region the basic integral solu-
tion 1s more accurate than the present solution. Consequently,
it is necessary in this region to evaluate both J-values as

to determine which is the more accurate. One obvious weakness
in the above recommendation is the use of composite solution
when ) does exceed 12. However, this 1s not considered to
be too serious; since such A-values would correspond to ex-
tremely large accelerations in the free stream. Further
Justification of this recommendation can be obtained in con=
sidering the following examples.

Strean Veloolty

This is the classical problem of an infinite plate moving
in a stationary incompressible fluid with a step=-change in
its velocity. The solution is well known and is given by
u* = err(y/2/vt), relative to the coordinate system fixed on
the plate, where erf 1is the usual error function. Solution
to the integral equation in this case 1s elementary, and 1is

shown in the following:

) (42)

K=0
The integral solution 1s then obtained by substituting the
above equation in the profile equation (10) and (12). The

corresponding error criterion is simply

ﬂ*{'\lc‘;—'
"
2l =

f Py (43)
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/2 ,. ,.J o ) .
/ (62/6ilx=o‘ The improved integral

where B = [(EH/FQ)
solution for this problem is equally elementary. Functions
P, and P, 1in Equation (29) and (30) reduce to

2 ,

Pro =T Py = O (44)

2
respectively. Solution to Equation (31), satisfying the
boundary conditions in (32), 1s simply u® = erf(N/B). How=
ever, since it can be shown readily that T defined as
' y/2/vt 1s related to T by N = NyB, the solution now becomes

u* = erf(n,) (45)
which 1is obviously identically to the exact solution. Thus,
it 1s seen that for this problem, the improved procedure leads
to exact solution; regardless of the type of profiles used in
the integral solution. The calculated J=values, as well as
the surface profile derivatives, are shown in Table 2.

EXAMPLE 3. The Rayleigh Problem with Constant Acceleration

This problem is similar to the previous one except that
the free-stream velocity undergoes constant acceleration from
rest, Exact solution to this problem is again known [6],
and is given by

. 2 -2 2, | v (e
R A 2 - (1+21y) Ll - erf(ngi] (46)

The solution to the integral equation (16) has been given by
Yang [25], and may be written as
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-« RESULTS FOR EXAMPLE 2

]
&
N

du®

[o )
=3
ny A
=
*¥

- o . polynomial 1.0954 3.4249
Integral Solutioh{ ) e T
\ exponential 1.,2247 4,.6340%107 ¢

Improved Solution 1.1284 0

1l
Exact Solution 1.1284 0

Fa(Ko)

A 47)
H(K,) (

]
W o

where K, 1s a constant satisfying Equation (18). Since the
corresponding value of X\ eéxceeds +12, only the result
based on exponential function can be considered. Thus,
Equation (18) leads to a G-value of =1/3. The error criterion
for the integral solution 1is now

0)

¢? (48)

J
J% J3 J
Now for the improved solution, Equations (29) and (30) reduce

respectively to
Plo=7% P20 ;‘(uo: - 1) (49)

The integrals in the solution to Equation (31) have been
evaluated numerically, yielding the new profile u¥* = u*(ﬂ).

Finally, this may be transformed Iinto the physical plane by

]
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also been determined from Equation (48). The comparison of
J=values and surface profile derivatives 1s shown in Table 3,
and that of the second profile derivatives, in Fig. 8. It

i1s seen that the present sélution 1s muech more accurate than
the basie integral solution, a result which is contrary to

that obtained in the first example. It is therefore clear

that in this region of application for A>12, it 18 necessary
to compute the error quantities for both the integral solutions
with and without the present improvement, such that the more
accurate result can be determined.

TABLE 3 - RESULTS FOR EXAMPLE 3
du*® J
an, ¥ vt*

Integral Solution (exponential) 2.3094 0,4459x10~3
Present Solution 2,2662  0,7682x107%

2.2
Exact Solution 2.2568 0



EXAMPLE 4. Unsteady Flow over Semi-Infinite Plate with

Constant Acceleration from Rest

This represents one of the problems in which the leading
edge plays a very important role in the solutions. These
problems have been systematically studied in the literature
[;2;141. In particular, this very problem is covered in the
series solutions of Cheng [13), and Cheng and Elliott [14],

which are, however, only valid for flat plates and free-stream

velocity starting from rest. In this numerical example;
attention 1is to be placed only in the region close to the
leading edge, since it is in this region that the basic in-
tegral equation (6) for this problem reduces to Equation (17)
exactly, which 18 now to be solved in terms of the boundary
eondition K(0) = O, The solution may be expressed in terms

of integrals, as follows:

(50)

which immediately ylelds either A = A(P) or G = G(P),
depending on the assumed profiles, which then leads to the
profile details according to the integral solution, For the

improved solution, functions P, and F, now become
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N S G
= 2 2 Jo N Jp

o ,
(51)

= N -
P, =X [ (v* - 2p)! iu—- + u” - 1]
. o =
respectively, where prime denotes derivatives with respect to
P. Equations (51) are explicitly written for the case where
velocity polynomials are considered. However; they are equally
valid for exponential functions, provided again that X is
replaced by (1 + 2G). When Equations (51) are evaluated
from the integral solution uQ* and the following identities
are utilized:

p NG —

1 - 2PF (37 RN

315 k5 9072 315 315 9072

, 201 - 20)(1 + 30)

" G(8 + 50 - 2hP)

where prime again refers to derivatives with respect to P,
Equation (31) is then solved in terms of integrals which in
turn are evaluated numerically. This calculation has been
carried out for both profiles for a range of P 1in the
neighborhood of P = 0., The J-values for the basic integral
solutions can be readily evaluated from Equation (36). How-
ever, calculation of that of the corresponding improved solu-
tions gives rise to a slight complication which needs special
treatment. This is a characteristic to all general problems

with non-similar profiles, as already pointed out by Yang [27],



In order to evaluate the error quantity e from Equation
(37), it is necessary first to determine functions P, and
P, from the improved profiles. However, in view of Equations.
(51), the distribution of du*/0P at all values of N mst
be known. Even though it could possibly be evaluated by
numerical differentiation from improved profiles at various
P-values, such an evaluation would be extremely awkward; and
it 1s highly desirable to be able to determine this distribu=
tion at any particular value of P. This c¢an be accomplished
by the following scheme. Differentiating Equation (31) with
respect to P ylelds

2 & 3 " 3y 3y, W’

=) + Pg =(=) =

wisigesm | v - — i gé
ane op O 3n op op op an (52)

which is subjected to the boundary conditions
du u”
3P op
Now Equation (52) may be solved in an identical way as that
for Equation (31), resulting in Ju“/dP. Thus, this determina-
tion is frozen at any P-value.

The calculated results for this problem are shown in
Figs. 9 and 10, together with the series solution of Cheng
(23], which 1s believed to be accurate in this problem, in
view of the nature of his solution. More specifically, Fig.
9 shows the variation of local skin=-friction coefficient

or = T4/(1/20uo2) with P and Fig. 10, the variation of the

|
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J=values. It 1s noted that all curves in Fig. 10 go through
J=0 at P =0, since there is no motion then and accord=
ingly, o6 = O, ylelding J = O in view of Equation (36).

These results again show the good correlation between the
calculated J-values and the relative accuracies of the integral
solutions with and without the present improvement. This
represents further evidence of the validity of the use of the

error criterion. Moreover; it 1s also seen that the improved
integral solution based on polynomials 1s much more accurate
than that based on éxponential functions. Sinee in this
problem values of X are all under the limit of 12, this re-
sult agrees well with that of the first example.

EXAMPLE 5. [Transient Boundary-Layer Development on a Semi-

Infinite Plate

This problem deals with the effect of step-wise change in
free-stream velocity on the development of unsteady boundary
layer on a semi-infinite plate which is originally in steady
motion. The step-wise change may represent either accelera-
tion or deceleration. The integral solution to this problem,
based on the method of characteristics, has already been
presented previously, and is shown in Equation (23). Only
the transient solution 1is considered here, since the steady-
state solution has already been treated in the literature

[gél. For this problem, functions P, and P, are given by

6 2r M U, T [T . :
S KCAE R R I

e
Py = 0
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Detailed numerical calculations of the integral solutions

with and without the present improvement, based on both as=

Up/Ugys hamely, 2.0 and 0.5, and several combinations of x*
and t¥. 1In addition, all pertinent values of J have also
been determined. Since no exact solution is availlable to
this problem in the literature, no comparison can be made
and only some representative results are presented. Table

L shows the calculated results for several specific combina-
tions of x* and t*, and some typical velocity profiles are
described in Fig. 11 to 14, incl. These results again clearly
indicate the validity of the improved solution. Finally, it
is to be noted that in a normal application to the present
problem, it 1s not necessary to obtain the integral solutions
based on exponential functions, since here X\ 1s identically
zero, which 1s well within the range of validity of the in~
tegral solutions based on polynomials.

EXAMPLE 6. Unsteady Flow over a Circular Cylinder

This last example treats a general unsteady boundary-
layer problem of flow over a circular cylinder. The free-

stream velocity distribution is written as
T, = o(x")a(s") (55)
where

o(x*) = 3.6314x" - 2.1709x*3 - 1.5144x">

2

g(t%) =1 - ¢+ &7 £*2 0

t%o
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where ¢(x*) is the steady free=stream velocity distribution
over a circular ¢ylinder as given by Heimenz [32]. Even though
this variation is now known not to be too accurate, it, never=
theless, serves the present purpose. The chosen time varia=
tion is one involving initially steady motion, then decelera-
tion, and finally followed by an acceleration. The general
calculation procedure described previously for a general un=
steady problem to obtain solution to the integral equation is
here used:. All integrations have been carried out by the
usual fourth-order Runge-Kutta routine. The result of this
solution based on polynomial profiles only is shown in Fig. 15,
For this problem Equations (29) and (30) are used directly,
since no simplification 18 possible. Wheén thé integral solu=
tion uc*()\,'ﬂ) is substituted into Equations (33), improved
profile'at any combination of x* and t* 1s easily obtained.
To caleulate the error quantity of the improved solution, it

18 now necessary to first evaluate Ou*/d\ ana u*/3t*

from the improved profile. This is again done by first dif-
ferentiating Equation (31) with respect to » and t¥*, and
then following the same scheme as that indicated in Equation
(52). Some results are shown in Table 5 and Fig. 16. Here
again the improved accuracy in the present solution may be

noted.
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CONCLUDING REMARKS

In this report an improved integral procedure, based on
two types of assumed profiles, is proposed to calculate the
behavior of unsteady laminar boundary layers over arbltrary
cylinders with arbitrarily prescribed unsteadiness in the
free stream. Also introduced is a simple error criterion
by which the validity of the improved solution can be readily
determined. In view of results from the numerical examples,
this error criterion correlates extremely well with the in-
accuracy of the approximate solutions on the basis of comparing
results with that from the exact solutions. Furthermore, the
eéritical comparisons in the second profile derivatives from
the integral solutions with and without the present improve=
ment technique and from the exact solutions in the first four
numerical examples have definitely indicated the high degree
of accuracy attainable in the present solution. As mentioned
previously, such accuracy 18 necessary for hydrodynamic stab-
11ity considerations. Consequently, the following recommenda-
tion has evolve¢ in the present study. For any general unsteady-
flow problem, the improved integral solution based on the
fourth-degree polynomial as the assumed profiles in the basic
integral solution should be used within the entire range of
validity of this basic integral solution, High degree of
accuracy can be expected, except possibly in the lmmediate
neighborhood of thé point of lamlnar separation. Outside of
this range, both integral solutions based on assumed expon-
ential functions should be utilized. The final solution here,
being either the basic integral solution or the improved solution,

is evidently the one with lower magnitude of the error quantity J.
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